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a  b  s  t  r  a  c  t

An  efficient  and  highly  reliable  automatic  selection  of  optimal  segmentation  algorithm  for  character-
izing  particulate  matter  is  presented  in  this  paper.  Support  vector  machines  (SVMs)  are  used  as a  new
self-regulating  classifier  trained  by  gray  level  co-occurrence  matrix  (GLCM)  of  the  image.  This  matrix  is
calculated  at  various  angles  and  the  texture  features  are  evaluated  for  classifying  the  images.  Results  show
eywords:
articulate matter
upport vector machines
ray level co-occurrence matrix

mage segmentation

that the  performance  of  GLCM-based  SVMs  is  drastically  improved  over  the  previous  histogram-based
SVMs.  Our  proposed  GLCM-based  approach  of  training  SVM  predicts  a  robust  and  more  accurate  segmen-
tation  algorithm  than the  standard  histogram  technique,  as additional  information  based  on the spatial
relationship  between  pixels  is  incorporated  for  image  classification.  Further,  the  GLCM-based  SVM  classi-
fiers were  more  accurate  and  required  less  training  data  when  compared  to  the  artificial  neural  network
(ANN)  classifiers.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Particulate matter (PM) is highly complex mixture of very fine
articles and liquid droplets present in the atmosphere. It is one
f the six criteria air pollutants identified and monitored by the
.S. Environmental Protection Agency (EPA) [1].  PM can be classi-
ed as ultrafine, fine, or thoracic particles depending on their size.
hese particles exist in different shapes and densities in the air, and
ence, the aerodynamic diameter has been recognized as a simple
eans of defining the size of particles [1,2]. The particles can pen-

trate deep into the lungs and cause degradation of lung function,
reathing problems, irregular heartbeat and nonfatal heart attacks.
ence, it is vital to determine the number, morphology and size dis-

ribution of these particles so as to reflect their intensity of harmful
ffects on human health.

Several techniques are developed to analyze the physical and

hemical properties of PMs  such as gravimetric method [3],  atomic
bsorption spectroscopy [4],  and high performance liquid, gas chro-
atography [5].  Scanning electron microscope (SEM), computer
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controlled scanning electron microscope and transmission electron
microscope have been used to provide quantitative information on
the size, morphology and elemental composition of particles [6].

The SEM method produces magnified images, better feature res-
olution and greater depth of field as compared to light microscope
[7]. Various commercial software tools for analyzing the SEM-based
particle images are available in the market [8].  The main limitation
of these packages is their inability to automatically determine the
best segmentation algorithm for a given image.

Segmentation refers to the process of partitioning a digital
image into multiple segments so as to separate the particles from
the background in the image [9].  For each image, the segmentation
algorithm is manually selected from a stack of available algorithms
based on user’s experience and knowledge. After segmenting the
image, particle features can be easily extracted.

Feature extraction is the process of generating features from
the image for classification and can be implemented by various
techniques such as histogram or gray level co-occurrence matrix
(GLCM). Histogram based methods are widely used for feature
extraction since they are fast and simple methods. Features derived
from this approach include moments such as mean, standard devia-
tion, average energy, etc. [10]. However, in the histogram approach

the relationship with the neighboring pixels is not considered,
which limits its performance. An alternate method is the GLCM
method, which determines the spatial relationship between the
pixels by calculating the difference in intensities between the
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enter pixel and its neighbors [11]. Other available methods include
ray level run-length method, gray level difference matrix and
ower spectrum method [12]. The GLCM-based methods outper-
ormed the other conventional segmentation methods in various
pplications such as terrain classification, lamb grading and medi-
al image analysis [13–15],  mainly due to utilization of the second
rder probabilities.

In this paper, a GLCM-based support vector machine (SVM)
ethod is proposed which is an improved version of our previous
ork using the histogram-based SVM method [8].  The GLCM-based

echnique quickly learns the additional knowledge obtained using
patial relations in an image and applies it for selecting the best
egmentation algorithm. There are a number of machine learning
echniques for image classification like artificial neural networks
ANN), fuzzy logic, genetic algorithm, and SVMs. The structure
f ANNs is difficult to understand and they may  fail to capture
nique attributes in the training phase [16]. Fuzzy logic requires
rior knowledge about the system, while genetic algorithms suffer
omplications in adequately representing the training/output data
24]. Out of various available machine learning techniques, SVM is
hosen because of its high generalization capability along with no
dditional knowledge requirement, even with high dimensionality
f the input space [17,18].

In [8],  the SVM is trained using the intensity histogram of the
mage (upper panel in Fig. 1), which carries no information regard-
ng the relative position of the pixels with respect to each other.
elative position of pixels is important for describing image fea-
ures and one way to incorporate this is through GLCM method
lower panel in Fig. 1). In this paper, the proposed GLCM-based SVM
pproach illustrates higher accuracy than the histogram-based
ethod for automating the image segmentation process.
The rest of the paper is organized as follows. The process of seg-

entation and feature extraction are explained in Section 2. Section
 briefly describes the concept of SVMs while the ANN model is dis-
ussed in Section 4. The results and discussion is given in Section 5
hile Section 6 concludes the paper.

. Particulate matter characterization methodology based
n SEM

Generally, SEM images of the filter paper (on which particles are
ollected) are represented by a 2D array of pixels followed by noise
eduction, segmentation and feature extraction procedures. Out of
hese processes, segmentation is the most vital step in analyzing
mages for PM characterization.

.1. Segmentation

Segmentation is the process of converting a digital image into
emantically interpretable regions by locating the boundaries such
s lines and curves of the visible particles [19]. Segmentation
ivides an image into its constituent regions or objects such that a
et of connected pixels have similar properties like color, intensity
r texture. In this process, labels are assigned to each image pixel
nd the pixels with same label are grouped as either particle pixel
r background pixel. Various segmentation techniques usually fall
nder four main categories, namely, clustering, thresholding, edge-
etection and region-based methods [20].

The clustering method groups pixels into clusters and distin-
uishes them by color or texture. The thresholding method converts
ultilevel images into binary images (black and white). The edge
etection method locates edges of the object in the image while
he region-based technique distinguishes the individual pixel from
he group of pixels [20]. In this paper, the thresholding methods
ike Kapur [21], Rosin [22], Otsu [23], Minimum error [24] and one
s Materials 223– 224 (2012) 94– 103 95

edge detection method known as Sobel [25] are incorporated to
evaluate the best segmentation algorithm for images. However, one
single segmentation algorithm may  not produce the best result for
all types of images. Hence, there is a need for an automatic selection
process of the optimal segmentation algorithm for a given image
to reduce human intervention.

2.2. Feature extraction and textural representation

Feature extraction is the measurement of a quantifiable prop-
erty, which specifies significant characteristics of the object [26].
The extracted features are represented as vectors and have a high
influence on the classification efficacy. An important approach
to obtain feature description is the object texture content mea-
surement, which is further divided into structural and statistical
categories. Structural techniques deal with the arrangement of
image primitives whereas the statistical method yields charac-
teristics of the image texture. The statistical method is a simple
approach, which analyzes the spatial distribution of the image gray
values by determining the local features of each image and derives
a set of statistics (first-order, second-order or higher-orders) from
the pixel distribution [27]. The first-order method evaluates the
properties of the individual pixels only, while second-order and
higher-order methods estimate the pixel properties occurring at
different locations relative to each other. The histogram method
belongs to the first-order approach while the GLCM method follows
the second-order approach.

2.2.1. Histogram
A histogram is a graphical representation containing the tonal

distribution of all image pixels. The histogram of a digital image
with intensity levels in the range of [0,L–1] is a discrete function
with L being the number of gray levels and is given by

h(rk) = nk, (1)

where rk is the kth intensity gray level value and nk is the number
of pixels in the image with intensity rk. In general, the intensity
levels are represented as 8-bit integers in the range 0–255 [28].
A histogram is made up of bins carrying certain intensity values
in each bin. The pixels with identical intensity values are grouped
together and the total number of pixels lying in each intensity range
is assigned to the respective bins. However, the drawback of the
histogram in classification of images is that the method is totally
dependent on the intensity value and number of pixels, ignoring
the content or shape information. The histogram for two differ-
ent images can potentially be identical, since they may  share the
same grayscale information, but may  have totally different object
content.

2.2.2. Gray level co-occurrence matrices
GLCM is the method of computing the frequency of pixel pairs

having the same gray level in the image [28]. The relationship
between the reference pixel and the neighboring pixels is calcu-
lated to determine the textural features of the image. In Fig. 1 (lower
panel), the cells 1 and 5 are the nearest neighbors at 0◦ to cell 0.
Similarly, cells 2 and 6, 3 and 7, 4 and 8 are the nearest neighbors
at 135◦, 90◦ and 45◦, respectively, to cell 0. The GLCM is formed by
evaluating the count of pixel pairs with gray level value i occur-
ring adjacent to the pixel with gray level value j [29]. The relative
frequencies of gray level pixel pairs separated by a distance d in a
particular angle � forms the displacement vector (d, �).

Let f : Vy × Hx → I be an image with dimensions, Vy = (0, 1, 2, . . .,

Iy − 1), Hx = (0, 1, 2, . . .,  Ix − 1) having a set of quantized gray-tones
G = (0, 1, 2, . . .,  L − 1). The coordinates of this image Vy × Hx repre-
sent the resolution cells containing the gray values for each pixel.
The texture is assessed by the four closely related measures called
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Fig. 1. Image classification using his

ngular nearest neighbor gray tone spatial dependence matrices.
he content information between two neighboring cells {(k, l), (m,
)} separated by a distance d is represented by Cij as illustrated in
ig. 2. Since the textures involved in the images considered in this
tudy are micro-textures, the distance d = 1 is chosen in order to
xtract the detailed textural information. Moreover, the pixels are
ore likely to correlate with the one that is located closer (i.e., with

maller value of d) than the pixels that are situated far away [30]. In
he figure, the displacement vector is (1,0◦) with k = m = 1 and l = 1,

 = 2 respectively, where I(k, l) = i, I(m, n) = j. Thus the gray tone spa-

ial dependence matrix is the function of the angular relationship
etween the neighboring resolution cells and the distance between
hem.

ig. 2. Example of an image gray-tone spatial dependence matrix with levels 0–3.
-based SVM and GLCM-based SVM.

The spatial measurement at different angles with the distance d
is given in Eqs. (2)–(5).

C(i, j, d, 0◦) = #{(k, l), (m, n) : k − m = 0,
∣∣l − n

∣∣ = d} (2)

C(i, j, d, 45◦) = #{(k, l), (m, n) : k − m = d, l − n = −d}
or

C(i, j, d, 45◦) = #{(k, l), (m, n) : k − m = −d, l − n = d}
(3)

C(i, j, d, 90◦) = #{(k, l), (m, n) : |k − m| = d, l − n = 0} (4)

C(i, j, d, 135◦) = #{(k, l), (m, n) : k − m = d, l − n = d}
or

C(i, j, d, 135◦) = #{(k, l), (m, n) : k − m = −d, l − n = −d}
(5)

where # represents the count of pixel pairs with identical intensity
level.

In Fig. 3(a), the matrix element present in the first row second
column (i.e., 3) represents the total number of instances that gray
tones of value i = 0 and j = 1 occurred horizontally adjacent to each
other as in Fig. 2. Here, the entry at the coordinates (0,1) is 3 because
there are three pixel pairs of (0,1) with distance d = 1 at angle 0◦.
Similarly, the spatial dependence matrix at angles 90◦, 135◦ and
45◦ are shown in Fig. 3(b–d).

Further, the spatial dependence of gray levels is quantified by
calculating the fourteen textural features of the co-occurrence

matrix constructed by Haralick et al. [11]. These fourteen textu-
ral parameters are highly correlated and hence only four features
in Eqs. (6)–(9) are sufficient for obtaining good image classifications
[13,31].
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ig. 3. Co-occurrence matrices derived from the spatial dependence matrix shown
n  Fig. 2 for angles: (a) 0◦ , (b) 90◦ , (c) 135◦ , (d) 45◦ .

Energy: The energy measures the occurrence of repeated pixel
airs within the image.

nergy =
∑

i

∑

j

C(i, j)2 (6)

Contrast: The contrast measures the difference between the
aximum and minimum value of a contiguous set of pixels.

ontrast =
∑

i

∑

j

(i − j)2C(i, j) (7)

Entropy: The entropy measures the disorder of the image and
s highly correlated to energy. Non-uniform texture has a high
ntropy value.

ntropy = −
∑

i

∑

j

C(i, j) log(C(i, j)) (8)

Inverse difference: The inverse difference (ID) measures the
moothness of the image.

D =
∑

i

∑

j

C(i, j)

1 + (i − j)2
(9)

Once these parameters are obtained for each image, SVMs are
rained and then tested for evaluating the best segmentation algo-
ithm with randomly selected images.

. Support vector machines

SVMs are supervised learning algorithms developed by Cortes
nd Vapnik [32]. Given a set of training data belonging to two
ifferent categories, an SVM training algorithm builds a training
odel that predicts the class for the new data. SVMs work on

tatistical learning theory and can produce robust, accurate and
ffective results using small training samples. The SVM determines
he maximum-margin hyperplane to separate two classes based on
he segmentation algorithm (Fig. 4). The decision hyperplane con-
ists of an intercept term b and a normal vector perpendicular to

he hyperplane called the weight vector w and is given by

.y + b = 0 (10)
Fig. 4. Schematic of a hyperplane seperating two classes.

where y is any random set of data points. Hence, to maximize the
margin between hyperplanes while still separating the data, opti-
mal  w and b parameters are determined by

w =
u∑

v=1

˛vxvyv, (11)

and

b = 1
Ns

Ns∑

v=1

(w.yv − xv) (12)

where  ̨ is non-negative Lagrange multiplier, xv ∈ {−1, + 1} is the
class label, u is the number of training sets and Ns is the number of
support vectors.

SVMs are fundamentally designed for binary class problem,
hence for a data set with s number of segmentation algorithms,
SVMs assume s = 1 as class one and the remaining labels as class
two. SVMs then find the maximum margin hyperplane between
class one and class two using Eq. (10). The value of s is incremented
till it reaches the maximum number of s classes for a multi-class
problem. Thus, SVMs are able to create a training model file by
assigning the classes for each training image. During the testing
phase, this learnt knowledge is applied to classify the images. The
classification performance of SVM depends mainly on the selec-
tion of kernel function and the regularization parameter C. Out  of
the different types of kernel functions, the commonly used radial
basis function (RBF) was selected because of its faster training rate
[33]. Further, to evaluate the optimal values for the kernel func-
tion parameters and C, the Leave One Out cross-validation method
[34] was  utilized that determined the optimal width of RBF to be
25 and C equal to 1000. Below is the detailed methodology for SVM
training and testing.

3.1. Training histogram-based and GLCM-based SVMs

The histogram is created by aggregating the pixels having sim-
ilar intensity values in each of the 256 bins. The training dataset is
then prepared containing one “target value” (class label or the seg-
mentation algorithm) and several “attributes” (features) with the
following format.
D = {(x , y1x256), (x , y1x256), . . . , (x , y1x256)} (13)

where T represents the transpose function, t is the total number of
training images, x1, x2, . . .,  xs are the segmentation algorithms and
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Fig. 5. GLCM-based ANN model using MLP  network.

1, y2, . . .,  yt are feature vectors for t training images each with 256
ntries.

On the other hand, the GLCM is calculated for each image at
our different angles, namely, 0◦, 45◦, 90◦ and 135◦. The Haralick
arameters (refer to Section 2.2.2) of entropy, energy, contrast and

nverse difference are evaluated for these four angles to create a
eature vector of 16 bins for an image as given by

 = {(x1, z1
1x16), (x2, z2

1x16), . . . , (xs, zt
1x16)}T

(14)

here z1, z2, . . .,  zt are the feature vectors each containing 16 bins.

.2. Testing SVM

Once SVM is sufficiently trained, it is tested using a dataset cre-
ted based on the image intensity histogram and the GLCM matrix.
ssuming m testing images, the histogram and the GLCM data are
iven in Eqs. (15) and (16)

 = {y1
1x256, y2

1x256, . . . , yt
1x256}T

(15)

 = {z1
1x16, z2

1x16, . . . , zt
1x16}T

(16)

To compare the performance of the SVM algorithm, an ANN
odel is also implemented in this paper as described below.

. Artificial neural network

ANNs are non-linear statistical data model capable of learning
he relationships between a series of input and the corresponding
utputs. ANNs contain a number of individual units (called neu-
ons) that are inter-connected with their associated weights. The
etwork parameters, like weights and biases, are adjusted through

 training process. A common type of ANN is a multi-layer percep-
ron (MLP) network, consisting of input, hidden and output layers.
xperience along with trial and error method helps in choosing the
umber of hidden neurons in the layer while training data decides
he neurons in the input and output layers.

In this study, an MLP  network with one hidden layer is trained
sing back propagation algorithm to derive a model for selecting
he optimal image segmentation algorithm (Fig. 5). To derive the
nput–output functional relationship model (f), the MLP  network
s initially assigned random weights and is then trained with the

esired input and output patterns. The relationship to be modeled
etween the input a and the output b is given in Eq. (17)

 = f (a, w) (17)
s Materials 223– 224 (2012) 94– 103

where w is the parameter which is estimated optimally during
training. The main objective of this training is to determine the
suitable weight w that minimizes the training error {E(w)} given in
Eq. (18) [35].

E(w) = 1
2

t∑

i=1

[b̂i − bi]
2

(18)

where b̂i is the trained output corresponding to the input ai
1×16, i

varies from 1 to t (total number of training images) and bi is the
desired output.

4.1. Training and testing ANN model

An ANN model is created such that the training error is mini-
mized and is less than 10−2 with the maximum of 200 iterations.
The training sets for ANN using GLCM method containing the input
feature and the corresponding output segmentation algorithm is
shown in Eq. (19) and validating sets created to test ANN is given
in Eq. (20).

A = {(a1
1x16, b1), (a2

1x16, b2), . . . , (at
1x16, bt)}T

(19)

A = {(a1
1x16), (a2

1x16), . . . , (at
1x16)}T

(20)

In this study, the number of input neurons is set to 16, the num-
ber of hidden neurons to 25 and the output neuron to 1. The number
of hidden neurons is determined using the trial and error method
varying between 5 and 50 until a minimum training error percent-
age is obtained. Finally the samples are validated to determine the
classification accuracy.

5. Results and discussion

To study the characteristics of the particulate matter, the air-
borne particles are collected on the polytetrafluoroethylene (PTFE)
filter paper using Grimm 1.108 aerosol spectrometer. FEI Quanta 3D
SEM then divided the filter paper into several grids and captured
the images from each grid [3].  Particles appeared as bright spots
in these images. The feasible images are selected from the stack
of captured images and a database for randomly selected train-
ing and testing samples is prepared. Three cases are implemented
and assessed: Case 1 consists of three segmentation algorithms to
choose from, namely, Minimum error threshold, Otsu threshold
and Rosin threshold. Similarly, Case 2 consists of four algorithms,
namely Minimum error threshold, Sobel, Otsu and Kapur algo-
rithms. For Case 3, the samples are segmented by five segmentation
algorithms, namely, Kapur threshold, Rosin threshold, Minimum
error threshold, Otsu threshold and Sobel algorithms. Equal num-
ber of training images is used for each segmentation algorithm for
fair assessment of the trained SVM classifier.

5.1. Classification performance of GLCM-based and
histogram-based SVMs

A database containing 150 images was  selected and randomly
divided into training and testing samples. Fig. 6 shows the seg-
mented images after applying three algorithms of Case 1. The SVM
predicted the Minimum error threshold as the best segmentation
method when trained using GLCM, whereas, Rosin was  predicted
as best algorithm when trained using histogram method. This
resulted into better performance of GLCM-based SVM method com-

pared to the histogram-based SVM method. The best segmentation
algorithm is manually selected by the expert by comparing the seg-
mented image with prominent particles and the original image.
Note that the image shown in Fig. 6(a) is randomly selected from a
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Fig. 6. Performance of segmentation algorithms used in Case 1: (a) original image. (b) Segmentation using Minimum error threshold method predicted by GLCM-based SVM
(c)  Otsu threshold segmentation, (d) Rosin threshold segmentation predicted by histogram-based SVM.

Table  1
Overall performance of histogram-based and GLCM-based SVM for Case 1.

No. of training images No. of testing images No. of correctly predicted images No. of incorrectly predicted images Accuracy (%)

Histogram GLCM Histogram GLCM Histogram GLCM

25 125 47 97 78 28 37 77
50  100 64 79 36 21 64 79
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75  75 49 

100  50 34 

125 25 20

et of 150 images and the segmented images using different algo-
ithms are shown in Fig. 6(b–d). Fig. 6(b) is perceived by the expert
o be the best segmented image among others, as the particles
resent in the image are protuberant compared to the other image
hown in Fig. 6(c) and (d). Table 1 depicts the number of images cor-
ectly and incorrectly predicted by SVM classifiers. For 25 training
nd 125 testing images, the GLCM-based method gave 77% accuracy
hile the histogram-based method gave 37%. Further, on increas-

ng the training images to 125, GLCM-based SVM gave 96% accuracy
s opposed to 80% by histogram method. This clearly demonstrates
hat the number of images correctly predicted by GLCM is more
s compared to the histogram method. Further, GLCM-based SVM
equired only 12–40 iterations for training as opposed to the his-
ogram method which required 120–500 iterations for the same
umber of samples. For instance, GLCM and histogram needed 12
nd 122 iterations respectively for 25 training samples.

For Case 2 (Fig. 7), GLCM-based SVM gave 96% and histogram-
ased SVM gave 68% accuracy with 125 training and 25 testing

mages. The segmentation by Sobel method produced much cleaner
esults for this particular image compared to the other algorithms

red circles) which was accurately predicted by GLCM-based SVM.
rom Table 2, it is observed that with the increase in the num-
er of training images from 25 to 125, the GLCM method accuracy

ncreased from 76% to 96%.
3 26 12 65 84
7 16 3 68 94
4 5 1 80 96

For Case 3, we incorporated five segmentation algorithms
to train histogram-based and GLCM-based SVMs. In this Case
(Fig. 8), GLCM-based SVM yielded 88% accuracy compared to 52% in
histogram-based SVM with 125 training and 25 test images. From
Table 3, we can clearly establish that the GLCM-based method is
more accurate than the histogram-based method for all the cases.
Tables 1, 2 and 3 also illustrate that the accuracy produced by apply-
ing three segmentation algorithms is higher than that obtained by
five segmentation algorithms.

Fig. 9 shows a monotonic increase in accuracy of GLCM-based
SVM with increase in number of training images. Further, the accu-
racy decreases when more segmentation algorithms are included in
SVM. The accuracy of SVM was higher for three algorithms (Case1)
which decreased when the number of algorithms was  increased to
four (Case 2) and five (Case3).

Table 4 presents the evaluated number of particles present in
the image shown in Fig. 7(a) with different segmentation algo-
rithms. The number of particles in the image is determined using
the Matlab built-in function called ‘bwlabel’ which computes con-
nected components in a binary image. For the randomly chosen

image shown in Fig. 7(a), the Sobel algorithm was selected as the
best algorithm by the expert and was correctly predicted by the
GLCM-based SVM. For this image, the Sobel algorithm identified 20
particles which are closest to the actual 31 particles in the original
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Fig. 7. Performance of segmentation algorithms used in Case 2:(a) original image, (b) Minimum error threshold predicted by histogram-based SVM, (c) Sobel method
predicted by GLCM-based SVM, (d) Otsu threshold, (e) Kapur threshold. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.)

Table 2
Overall performance of histogram-based and GLCM-based SVM for Case 2.

No. of training images No. of testing images No. of correctly predicted images No. of incorrectly predicted images Accuracy (%)

Histogram GLCM Histogram GLCM Histogram GLCM

25 125 44 95 81 30 35 76
50  100 60 79 40 22 60 78
75  75 46 63 29 13 62 83

100  50 33 47 17 6 66 88
125  25 25 24 8 1 68 96

Table 3
Overall performance of histogram-based and GLCM-based SVM for Case 3.

No. of training images No. of testing images No. of correctly predicted images No. of incorrectly predicted images Accuracy (%)

Histogram GLCM Histogram GLCM Histogram GLCM

25 125 41 94 84 31 33 75
50 100 59 75 41 25 59 75
75  75 45 59 30 16 60 79

100 50 32 42 18 8 64 84
125  25 13 22 12 3 52 88
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Fig. 8. Performance of segmentation algorithms used in Case 3: (a) original image, (b)
GLCM-based SVM), (e) Rosin threshold, (f) Sobel method (predicted by histogram-based S

Fig. 9. Effect of varying number of training images and segmentation algorithms on
the accuracy of GLCM-based SVM.
 Kapur threshold, (c) Minimum error threshold, (d) Otsu threshold (predicted by
VM).

image. The Otsu threshold method predicted by the histogram-
based SVM gave 47 particles. Although the Sobel algorithm showed
lesser number of particles compared to the actual one, the particles
segmented by this algorithm were more prominent than those by
the other methods.

5.2. Statistical performance of GLCM-based and histogram-based
methods

The statistical performance of the GLCM-based and the
histogram-based methods are evaluated by a confusion matrix
method [36]. A confusion matrix displays the number of correct and
incorrect predictions made by a method when compared with the
actual classifications in the test data. The matrix arrangement is in
such a way  that the instances of predicted classes form the columns
and the numbers of actual classes are the rows of the matrix. Table 5

shows the confusion matrix of GLCM-based SVM for Case 3 with 125
testing images. The entry in row one, column one illustrates that
for twenty images, Otsu was correctly predicted by GLCM-based
SVM. Similarly, the entry in row two, column one indicates that
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Table 4
Number of particles identified by segmentation algorithms in image of Fig. 7.

Actual number of particles No. of particles identified by segmentation algorithms

Sobel Minimum error Otsu Rosin Kapur

31 20 45 47 760 95

Table 5
Confusion matrix of GLCM-based SVM classifier for Case 3.

Predicted

Actual Otsu Rosin Kapur Sobel Minimum threshold

Otsu 20 0 0 2 0
Rosin 2 15 2 3 1
Kapur  0 0 19 0 0
Sobel 2 0 2 23 0
Minimum threshold 3 0 6 5 20

Table 6
Performance of GLCM-based and histogram-based SVM classifiers.

No. of training images No. of testing images Precision Sensitivity Specificity F-measure

Histogram GLCM Histogram GLCM Histogram GLCM Histogram GLCM

25 125 0.37 0.83 0.35 0.78 0.83 0.94 0.36 0.80
50  100 0.63 0.85 0.61 0.78 0.87 0.95 0.62 0.81
75  75 0.73 0.88 0.72 0.84 0.89 0.96 0.73 0.86

100 50 0.74 0.91 0.73 0.94 0.91 0.98 0.73 0.93
125  25 0.75 0.92 0.80 0.97 0.93 0.99 0.77 0.94

Table 7
Performance comparison of SVM and ANN classifiers.

No. of training images No. of testing images Accuracy (%)

Case 1 Case 2 Case 3
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osin algorithm was wrongly Otsu predicted as algorithm for two
mages by GLCM-based SVM.

Table 6, lists the specificity, sensitivity, precision and F-measure
omputed using the confusion matrix evaluated from Table 5. The
ensitivity or recall is the correctly classified proportion of the test
amples while the specificity gives the proportion of incorrectly
lassified test samples. The precision is the ratio of correctly clas-
ified images by a single segmentation algorithm among the total
umber of correct predictions by all the algorithms whereas the F-
easure is the harmonic mean of precision and recall given in Eq.

21) [37].

-measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(21)

The sensitivity of histogram-based method was 0.35 and 0.80 for
25 and 25 testing images, respectively, while that of GLCM-based
ethod was 0.78 and 0.97, respectively. Similarly, the specificity

or histogram method varied from 0.83 to 0.93 while that of GLCM
ethod was 0.94 to 0.99. Further, for GLCM method the largest F-
easure is determined to be 0.94 while for histogram it is 0.77.
ence, we conclude that the GLCM-based SVM approach is more
ffective in selecting the better segmentation algorithm than the
istogram-based SVM method.
.2.1. Performance of GLCM-based SVM and ANN classifiers
The performance of two GLCM-based classifiers, namely, ANN

nd SVM were assessed by using the same number of train-
ng/testing images. A database containing 60 images was randomly
SVM ANN SVM ANN SVM

90 50 80 40 80

selected and divided into 50 training and 10 testing samples.
It is evident from Table 7 that the ANN gave classification effi-
ciency of 70% for Case 1, 50% for Case 2 and 40% for Case 3 while
GLCM-based SVM gave accuracy of 90%, 80% and 80%, respec-
tively. Also, the SVM classifier required only 20 iterations while
ANN required 200 iterations for the same number of training
images. For Case 3, when the training images were reduced to
25, the accuracy of the SVM dropped to 80% which is still higher
than that of ANN classifier (70%). This demonstrates that SVM
classifiers perform better even with less number of training sam-
ples and overall are more accurate and robust than the ANN
classifiers.

The performance analysis of SVM and ANN methods are deter-
mined using the confusion matrix for Case 1, Case 2 and Case 3.
Table 8 shows the specificity, sensitivity, precision and F-measure
computed using the confusion matrix for ten testing images. For
Case 1, the sensitivity of SVM and ANN classifiers was determined
as 0.93 and 0.64 respectively while the specificity was 0.96 and 0.83
respectively. Further, the largest F-measure determined by SVM is
0.90 while ANN gave 0.66 value for Case 1. Hence, our proposed
method outperforms ANN method.

In future, the feature extraction capabilities of GLCM and
histogram techniques can be integrated to further enhance the
performance of the SVM method. The feature selection pro-

cess in the GLCM method forms an important step, especially
when the number of observations is relatively small compared
to the number of features, and can be improved by additional
pre-processing.
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Table  8
Performance analysis of SVM and ANN methods derived from the confusion matrix.

No. of segmentation algorithms Precision Sensitivity Specificity F-measure

ANN SVM ANN SVM ANN SVM ANN SVM
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3 (Case 1) 0.68 0.88 0.6
4  (Case 2) 0.42 0.83 0.4
5  (Case 3) 0.36 0.83 0.4

. Conclusion

This paper demonstrates an enhanced performance in predict-
ng the optimal segmentation algorithm by the GLCM-based SVM
n comparison to the histogram-based SVM. The GLCM-based SVM
chieved an accuracy of 96% compared to 80% in the histogram-
ased method when three segmentation algorithms are used.
hen used with five segmentation algorithms, the GLCM-based

VM was 88% accurate as opposed to the histogram-based approach
hich provided 52% accuracy. The GLCM-based SVM outperformed

he histogram-based in statistical assessment by the confusion
atrix method. The maximum derived F-measure parameter from

he matrix is 0.94 for the GLCM-based while it is 0.77 for the
istogram-based method. The performance of GLCM-based SVM
as significantly better (80–90% accuracy) than that of ANN clas-

ifier (40–70% accuracy). Thus, we demonstrate that the proposed
LCM-based SVM is more accurate than the previously developed
istogram-based method and the ANN method.
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